Low Power DC/DC Converters

Smallest solution size, highest efficiency and lowest quiescent current

OĞUZHAN DEMİRCİ
Agenda

• Product Overview
 – Modules
 – Ultra Low IQ
 – HotRod Package
 – Industrial Converters

• DCS Control
 – Why do we need DSC-control?
 – Which type of control is possible?
 • Voltage mode vs. Hysteretic control
 – Benefits of DSC-control

• Reference Designs
 – PMP9763 Energy Buffering Concept
 – PMP9767 Efficient, LDO-less Power Supply for a 12-bit 500-MSPS ADC
 – PMP9755 & PMP9766 Backup Power Concepts
Low Power DC/DC Converters

Product Overview

Oğuzhan Demirci
Low Power DC/DC Solutions
Low Power DC/DC TPS61 / 62 / 63

Small total solution size and cost
→ Few (typ. 3) and small external components
 QFN, SON or WSCP needs only C_{IN}, C_{OUT}, L

High efficiency (up to 97%) and very low I_Q down to 360nA
→ Long operating & standby time and low system temperature

Low EMI and low system noise
→ DCS-Control™ topology, low V_{OUT} ripple (10mV), high PSRR (90dB),
 Spread Spectrum,

Easy-to-use, synchronous DC/DC with integrated compensation
→ Quick development time and high system reliability
 MicroSiP™ modules <6.7mm² with fully integrated C_{IN}, C_{OUT}, L solution
Low Power DC/DC Modules – TPS82xxx

MicroSiP™ Integration

Controller
external FETs, Inductor, Capacitors

Converter
external Inductor, Capacitors

uSIP Module
No externals

uSIP Module
external Capacitors

empa::electronics

Texas Instruments
<table>
<thead>
<tr>
<th></th>
<th>TPS82740</th>
<th>TPS8267x</th>
<th>TPS8269x</th>
<th>TPS8268x</th>
<th>TPS82085 TPS82084</th>
<th>TPS82480* TPS82135 TPS82130 TPS82140 TPS82150*</th>
<th>TPS81256 BOOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>IN</sub></td>
<td>2.2V to 5.5V</td>
<td>2.3V to 4.8V</td>
<td>2.3V to 4.8V</td>
<td>2.5V to 5.5V</td>
<td>2.5V to 6V</td>
<td>2.4V to 5.5V</td>
<td>3.0V to 17V</td>
</tr>
<tr>
<td>V<sub>OUT</sub></td>
<td>1.8V to 3.3V (16 voltages pin-selectable)</td>
<td>1.05V to 2.1V (12 output voltage options)</td>
<td>2.2V to 3.0V (5 output voltage options)</td>
<td>0.90V to 1.80V (5 output voltage options)</td>
<td>0.8V to V<sub>IN</sub> (adjustable)</td>
<td>0.6V to 5.5V (adjustable)</td>
<td>0.9V to 5V (adjustable)</td>
</tr>
<tr>
<td>I<sub>OUT</sub></td>
<td>200mA</td>
<td>600mA</td>
<td>800mA</td>
<td>1600mA</td>
<td>3000mA 2000mA</td>
<td>6000mA</td>
<td>3500mA* 3000mA* 1000mA*</td>
</tr>
<tr>
<td>Module size</td>
<td>2.3x2.9x1mm</td>
<td>2.3x2.9x1mm</td>
<td>2.3x2.9x1mm</td>
<td>2.8x3.0x1.3mm +external Caps</td>
<td>tbd</td>
<td>2.8x3.0x1.15mm +external Caps</td>
<td>2.6x2.9x1mm</td>
</tr>
<tr>
<td>Solution size incl. L, C<sub>IN</sub>, C<sub>OUT</sub></td>
<td>6.7mm<sup>2</sup></td>
<td>6.7mm<sup>2</sup></td>
<td>6.7mm<sup>2</sup></td>
<td>6.7mm<sup>2</sup></td>
<td>35mm<sup>2</sup></td>
<td>tbd</td>
<td>42mm<sup>2</sup></td>
</tr>
<tr>
<td>I<sub>Q</sub></td>
<td>0.36µA</td>
<td>17µA</td>
<td>24µA</td>
<td>7mA</td>
<td>17µA</td>
<td>23µA</td>
<td>20µA</td>
</tr>
<tr>
<td>Efficiency</td>
<td>95%</td>
<td>90%</td>
<td>95%</td>
<td>88%</td>
<td>95%</td>
<td>96%</td>
<td>90%</td>
</tr>
</tbody>
</table>

* in development

TI Information – Selective Disclosure
3A MicroSiP™ Power Module
TPS82085

MicroSiP™ package saves 45% PCB area
TI’s smallest 3A buck module (2.8 x 3.0 x 1.3mm SiL package with integrated inductor)

Efficiency up to 95% and 17µA \(I_Q \) extend battery operating time and keeps the system cool

1% \(V_{FB} \) accuracy, line/load regulation and low output ripple for reliable supply operation

Fast transient response with DCS-Control™
3A MicroSiP™ Power Module
TPS82085

Efficiency (%)

Load (A)

V_{OUT} = 1.8 V

V_{IN} = 3.0 V

V_{IN} = 3.5 V

V_{IN} = 4.0 V

V_{IN} = 5.0 V

D002
Ultra-Low Power Portfolio

<table>
<thead>
<tr>
<th>Output current</th>
<th>100mA</th>
<th>300mA</th>
<th>400mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low V_{IN} Buck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS62730</td>
<td>TPS62740</td>
<td>TPS62742</td>
<td></td>
</tr>
<tr>
<td>30nA bypass, 1x1.5 SON</td>
<td>360nA I_Q, 2x3 SON</td>
<td>360nA I_Q, 2x3 SON</td>
<td></td>
</tr>
<tr>
<td>TPS82740</td>
<td>TPS62743/6/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360nA I_Q, 2.3x2.9 Module</td>
<td></td>
<td>360nA I_Q, 1.6x0.9 WCSP</td>
<td></td>
</tr>
<tr>
<td>Mid V_{IN} Buck</td>
<td>TPS62120</td>
<td>TPS62745</td>
<td>TPS62175</td>
</tr>
<tr>
<td></td>
<td>V_{IN} 2-15V, 10µA I_Q</td>
<td>V_{IN} 3.3-10V, 400nA I_Q</td>
<td>V_{IN} 4.75-28V, 5µA I_Q</td>
</tr>
<tr>
<td>Boost</td>
<td>TPS61220</td>
<td>TPS61291</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5µA bypass</td>
<td>I_Q=15nA bypass</td>
<td></td>
</tr>
<tr>
<td>NEW</td>
<td>TPS61096</td>
<td>TPS61099</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1µA I_Q, 2x2 SON</td>
<td>800nA I_Q, 0.9x1.2 WCSP</td>
<td></td>
</tr>
<tr>
<td>Dual Output</td>
<td>TPS61098</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300nA I_Q, Boost, with LDO / Load Switch, 1.5x1.5 SON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS62770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360nA I_Q, Buck, with Boost, WCSP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TI Information – Selective Disclosure
TPS62740 Family Extension – part 1
Ultra-Low Power Buck Converter

TPS62740
- 2.2V to 5.5V\(_\text{IN}\)
- 300mA\(_\text{I}_{\text{OUT}}\)
- 360nA quiescent current, 90% efficiency for \(I_{\text{OUT}}>10\mu\text{A}\)
- 16 pin-selectable voltages (100mV steps) 1.8V to 3.3V
- Integrated Load Switch
- Power Good output
- 2 x 3mm SON

TPS62742
- 3.0V to 5.5V\(_\text{IN}\)
- 400mA\(_\text{I}_{\text{OUT}}\)
- 360nA quiescent current, 90% efficiency for \(I_{\text{OUT}}>10\mu\text{A}\)
- 16 pin-selectable voltages (100mV steps) 1.8V to 3.3V
- Integrated Load Switch
- Power Good output
- 2 x 3mm SON

TPS62743
- 2.0V to 5.5V\(_\text{IN}\)
- 300mA\(_\text{I}_{\text{OUT}}\)
- 360nA quiescent current, 90% efficiency for \(I_{\text{OUT}}>10\mu\text{A}\)
- 8 pin-selectable voltages 1.2V to 3.3V
- 1.6 x 0.9mm WCSP

TPS62746
- 2.0V to 5.5V\(_\text{IN}\)
- 300mA\(_\text{I}_{\text{OUT}}\)
- 360nA quiescent current, 90% efficiency for \(I_{\text{OUT}}>10\mu\text{A}\)
- 2 pin-selectable voltages 1.2V / 1.8V
- Integrated \(V_{\text{IN}}\) Switch
- 1.6 x 0.9mm WCSP
TPS62740 Family Extension – part 2
Ultra-Low Power Buck Converter

TPS62748
- 2.0V to 5.5V\(_{\text{IN}}\)
- 300mA\(_{\text{OUT}}\)
- 360nA quiescent current, 90% efficiency for \(I_{\text{OUT}} > 10\mu\text{A}\)
- 2 pin-selectable voltages (1.2V / 1.8V)
- Integrated Load Switch
- 1.6 x 0.9mm WCSP

TPS62745
- 3.3V to 10V\(_{\text{IN}}\)
- 300mA\(_{\text{OUT}}\)
- 400nA quiescent current, 90% efficiency for \(I_{\text{OUT}} > 15\mu\text{A}\)
- 16 pin-selectable voltages (100mV steps) 1.8 to 3.3V
- Power Good output
- 2 x 3mm SON

TPS82740A/B
- 2.2V to 5.5V\(_{\text{IN}}\)
- 200mA\(_{\text{OUT}}\)
- 360nA quiescent current, 90% efficiency for \(I_{\text{OUT}} > 10\mu\text{A}\)
- 2x8 pin-selectable voltages (100mV steps) 1.8 to 3.3V
- Integrated Load Switch
- Power Good output
- 2.3 x 2.9 x 1.1mm MicroSIP module (integrated \(C_{\text{IN}}, C_{\text{OUT}}, L\))
TPS62743 - Ultra-Low Power Buck Converter

Vout = 1.8V

Efficiency vs. Iout (mA) for different VIN values:
- VIN = 2.5 V
- VIN = 3.0 V
- VIN = 3.6 V
- VIN = 4.2 V
- VIN = 5.0 V
Solution size reduction with MicroSiP™

TPS62740 in SON package w/ external passives components

TPS62743 in WSCP package w/ external passives components

TPS82740 in MicroSiP™ package w/ external passives components

MicroSiP™ Module 4 x smaller!
HotRod™ Package
Easy-to-Use, Low Resistance, Good Thermals

QFN
- Flexible Assembly easy
- Hi Resistance
- Good thermals

![QFN Diagram](image)

WCSP
- Low power
- Handling bare die
- Low Resistance
- Bad thermals

![WCSP Diagram](image)

HotRod
- Best Performance
- Like a QFN
- Low Resistance
- Good thermals

![HotRod Diagram](image)

- High Efficiency
- Higher Power Density

HotRod™ eliminates wire bonds by attaching the power device and/or die directly to the leadframe. This construction results in a cost effective advanced packaging that improves electrical and thermal performance.
TPS630250
Industry smallest $2A_{\text{OUT}}$ single-inductor Buck-Boost

FEATURES

- 2.3V to 5.5V$_{\text{IN}}$, 2A output current supported over entire V$_{\text{IN}}$ range
- Automatic Power-Save Mode with 35μA I_{Q}
- V$_{\text{OUT}}$ ripple <50mV in PFM mode
- Load Disconnect
- TPS630250 (adj V$_{\text{OUT}}$), ‘251(2.9V$_{\text{OUT}}$), ‘252(3.3V$_{\text{OUT}}$)
- 20 pin WCSP 1.7x2.1mm
- 14 pin HotRod™ QFN 2.5x3mm

APPLICATIONS

- Smart Grid back-up power
- ePOS Point of Sales
- Single Li-Ion cell powered applications

BENEFITS

- Supports new chemistry Li-Ion batteries which enable lower cutoff voltages
- Efficiency higher than 90% (97% peak) over the complete load range extends battery life
- High V$_{\text{OUT}}$ accuracy over the complete load range
- Protects the device against reverse current as well as eliminates parasitic drain from battery when converter is disabled
- Total solution size <44 mm2
 - ✔ Easy-to-Use QFN
 - ✔ Low Resistance
 - ✔ Good thermals
TPS630250 Thermal Results

20 pin WCSP 1.7x2.1mm

Vin=3.6V, WCSP, Vout=3.3V, Iout=3A

14 pin HotRod™ QFN 2.5x3mm

Vin=3.6V, HotRod, Vout=3.3V, Iout=3A
Low Power DC/DC Industrial Buck Converter
TPS62097 – 2A Step-Down Converter

FEATURES

- iDCS-Control™ with Forced-PWM mode and adjustable switching frequency (1.5-2.5 MHz)
- 1% Vout accuracy ($V_{OUT} = 0.8V - Vin$)
- Adjustable startup and voltage tracking
- V_{IN}: 2.5V to 6V
- 100% duty cycle mode for lowest dropout
- 17µA quiescent current in Power Save Mode
- Output voltage discharge function
- -40 to +125°C Tj
- Package 2x2mm HotRod™ package

APPLICATIONS

- Factory Automation
- Programmable Logic Control
- Test & Measurement
- Industrial Point-of-Load

BENEFITS

- RF-friendly DC/DC converter for noise-sensitive, precision industrial applications
- Fast transient response for FPGAsupply
- High flexibility for multiple loads
- Small solution size 28mm²
DCS-Control ➔ iDCS-Control

Direct Control with Seamless Transition into Power Save Mode

iDCS-Control (Intelligent DCS-Control)

Added features:

1) *Selective PWM switching frequency by an external resistor*
2) *Forced PWM or Power Save Mode*

<table>
<thead>
<tr>
<th>Mode Pin</th>
<th>Switching Frequency</th>
<th>PWM/PFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode = AGND</td>
<td>2MHz</td>
<td>Auto entry/exit PWM/PFM</td>
</tr>
<tr>
<td>Resistor at Mode pin</td>
<td>Selectable from 1.5MHz to 2.5MHz</td>
<td>Forced PWM only</td>
</tr>
</tbody>
</table>
Low Power DC/DC Industrial Buck Converter
TPS62097 – 2A Step-Down Converter

The device offers the following options and features:

- Choice between highest efficiency or low output voltage ripple
 ➔ Mode pin
- High efficiency combined with small total solution size
 ➔ HotRod package, small R_{DSON}
- Control of voltage rails for multiple loads (sequencing)
 ➔ Voltage Tracking, adj. Soft Start, Power Good
- A low system noise for data converter and sensors
 ➔ Selectable frequency between 1.5MHz to 2.5MHz

$V_{OUT} = 3.3V$
TPS61088
10A Peak Current Synchronous Boost with Adjustable Current Limit

FEATURES

- Input voltage range: 2.7V - 12V
- Output voltage range: 4.5V - 12.6V
- 10A peak current limit (Resistor-Programmable)
- Low Rdson: 11mΩ / 13mΩ
- Synchronous boost with +/- 1.5% accuracy
- Up to 91% efficiency (Vin=3.3V, VOut=9V, IOut=3A)
- Isd (into Vin) 1µA in shut down mode
- Programmable soft start
- PFM / forced PWM mode (adjustable Switching Frequency: 200 kHz to 2.2 MHz)
- Over voltage protection, over current protection, thermal shutdown
- 3.5mmx4.5mm QFN-20 package

APPLICATIONS

- Quick Charge Power Bank
- POS terminal / Printer
- Bluetooth Speaker
- E-cigarette

BENEFITS

- High power capability
- Compact solution
TPS61088
10A-switch, fully integrated, synchronous Boost with adjustable peak current limit

Quick Charger / Power bank

Thermal printer

Differentiations
- Compact solution size
- Low Rdson
- Good thermal performance

Benefits
- Save space on the PCB
- Minimize components / BOM cost
- High efficiency

E-cigarette

Bluetooth speaker

Differentiations
- Fully integrated sync boost converter
- Compact solution size
- Low Rdson, High efficiency

Benefits
- Minimize components, save BOM cost
- Save PCB area
- Good thermal performance

Differentiations
- Low quiescent current and high efficiency
- Compact total solution size
- Adjustable output current limit

Benefits
- Extends battery life
- Save PCB area
- High design flexibility

empp...electronics

Texas Instruments
Low Power DC/DC New Buck Converter ≥2A

- **TPS62085**: 3A, 2x2 HotRod™
- **TPS62095**: 4A, 3x3 QFN
- **TPS82085**: 3A, MicroSip™
- **TLV62085**: 3A Value Line, 2x2 HotRod™
- **TPS62097**: 2A, Mode, 2x2 HotRod™
- **TPS62480**: 6A dual phase, 2.5x3 HotRod™
- **TPS62180**: 6A dual phase, 2.1x3.1 WCSP
- **TPS62184**: 6A dual phase, 2.1x3.1 WCSP
- **TPS82130**: 3A, MicroSiP™

Low Vin ≤6V

Medium Vin ≤17V

2014 2015 2016

- **Released**
- **DEVELOPMENT**
Low Power DC/DC New Boost Converter

Ultra-Low Power
- TPS61220
 - 5μA \(I_Q \)
 - Bypass

High Power
- TPS61030
 - 4A Switch
- TPS61230
 - 5A Switch
- TPS61291
 - 15nA \(I_Q \)
 - Bypass
- TPS61088
 - 10A Switch

Wide \(V_{IN} \), Wide \(V_{OUT} \)
- TPS61046
 - 0.8x1.2mm
- TPS61170
 - TPS61175

PMOLED / WLED Backlight
- TPS61040
- TPS61041
- TPS61042
- TPS61043
- TPS61045

Boost + LDO/LoadSwitch
- TPS61098
 - 300nA \(I_Q \)
Low Power DC/DC Collateral

- Low-power DC/DC highlights and device overview SLYT522B
- Low-power DC/DC Converter with DCS-Control™ brochure SLYT543
- Low-power DC/DC Converter Modules SLVT175
- End Equipment / Customer Presentations on ESP
DCS-Control
Direct Control with Seamless transition into power-save mode

• Why do we need DSC-control?
• Which type of control is possible?
 • Voltage mode vs. Hysteretic control
• Benefits
• Understanding frequency variation in the DCS-control
Why do we need DSC-control?

- Smaller solution size / higher power density

- Higher efficiency
 Extends operation time of application
 Reduces overall system temperature

- Longer operating and stand-by time
 Active communication with application, e.g. DVS
 Lower quiescent current, Snooze Mode

- Lower solution cost
 Less external components
 Smaller external components

- Lower EMI and system noise
 No need for filtering
 Supporting audio, optical and RF systems
Which type of control is possible? Traditional Voltage mode PWM Control

OSC = Fixed Frequency

Internal Compensation

PFM Detection Circuitry

PFM Circuitry

Switch current

Peak or average control
Which type of control is possible? Summary – PWM control architecture

- **Complex** and silicon intensive (**costly**) Power Save Mode entry, exit and operation mode circuits
- **Loop compensation** required
- **Fixed switching frequency** with +/-20% typical tolerance

We need something new to reach the next level
Which type of control is possible?
Basic Hysteretic Control

\[f_s = \frac{(V_{in} - V_{out}) \cdot V_{out} \cdot ESR}{V_{hys} \cdot L \cdot V_{in}} \]

Switching Frequency Varies and is a Function of ESR, L and V_{hys}
Which type of control is possible? Considerations – Hysteretic Control

- Possibly **simplest** control circuit
- **Fastest response** to input voltage and output voltage perturbations among all control techniques
- Switching frequency depends on \(V_{\text{hys}}, L, V_{\text{in}}, V_{\text{out}} \) and ESR
 - Frequency variation
- Inherently **stable** operation

Technical items to be solved

- Modern DC-DC converters have **no output capacitor ESR**
- Compensate for effects preventing good **output voltage accuracy**
- Implementation of **Power Save Mode**
- Control or acceptance of switching **frequency variation**
Which type of control is possible? DCS-Control™

Proprietary Ramp Circuitry Feeds VOS (Vout) to Comparator

VOS (Vout)

direct control & compensation

ramp

error amplifier

comparator

timer t_{ON}

DCS - Control™

Error Amplifier for Precise DC Regulation

Hysteretic Comparator for Fast Response to Changes in Output Voltage

On Timer for Power Save Mode and Constant Operating Frequency

Feedforward Capacitor Only Required for Power Save Mode Performance
Improvements with DCS-Control Topology

TPS62040 (Voltage Mode)

Output Voltage

Inductor Current

Load Current

No Load Output Ripple = 26.3 mV

TPS62080 (DCS-Control™)

Output Voltage

Inductor Current

Load Current

No Load Output Ripple = 6.9 mV

⇒ Output Voltage Ripple is reduced by >70%

CH1 – VOUT @ 20mV/div, AC Coupled
CH2 – IL @ 200 mA/div
CH3 – ILOAD @ 200 mA/div
t = 20ms per division
Improvements with DCS-Control Topology

TPS62110 (Voltage Mode)

TPS62150 (DCS-Control™)

Seamless transition between PWM and Power Save Mode

⇒ No disturbing bursts

CH1 – VOUT @ 50mV/div
CH2 – IL @ 1A/div
CH3 – ILOAD @ 1A/div
Improvements with DCS-Control Topology

Fastest transient response TPS62090

Load Step 0.2A to 2A

CH2: Vout, CH4 = Iload, CH1 = Inductor current

Immediate and fastest response to a load step due to 100% switch turn on
Efficiency with DSC-control (TPS62130)

- Vout: 5V
 - fsw: 1.25MHz
 - fsw: 2.5MHz

- Vout: 5V
 - fsw: 1.25MHz
 - fsw: 2.5MHz
Identifying DCS-Control™ devices

Datasheet:
- Bullets on 1st page
- Simplified Block Diagram

Example for TPS62130, TPS62140, TPS62150

Check: www.ti.com/dcs-control
PMP9767

Efficient, LDO-less Power Supply for a 12-bit 500-MSPS ADC
Efficient, LDO-less Power Supply for a 12-bit 500-MSPS ADC

Solution Features
- > 80% total efficiency using SMPS
- > 40% input current reduction compared to LDO solution
- Same performance as LDO power solution

Solution Benefits
- Lower system temperature
- ~2x operating time on batteries
- Less input power required
- 12-bit performance maintained
- SNR > 61 dB
- SFDR > 77 dB

Featured Applications:
- Portable test and measurement
- Portable data acquisition
- Industrial applications
- Software Defined Radio

Tools & Resources
- **PMP9767 Tools Folder:** (Test report, schematics, etc.)
- **TPS62231 / TPS62237**
 (0.5A ultra small buck)
- **TPS79601**
 (1A LDO regulator)
- **ADS540x**
 (12-bit, >=500MPS ADC)
TPS6223x maintained nearly 62 dBFS SNR and 78 dBc SFDR at 230 MHz frequency and 500 MSPS clock rate, while improving efficiency from 47 to 82%, saving over 250 mA current to the ADC.

PMP9767 shows a proven SMPS solution for powering a data converter with higher efficiency, a clean enough voltage, and reasonable cost.
PMP9755 / PMP9766
Backup Power Solutions for Line Powered Applications
Typical backup power example in smart Grid

In case of a power loss the backup solution will provide the energy to the system. This energy can be used to save the latest data and send it to a data concentrator.
Backup Power Solution for Data Concentrator Circuit Using TPS61030

Solution Features
- Single Super Capacitor to Power RF Module
- 1.7V~2.65V Super Capacitor Operating Voltage
- Seamless Transition Between Main Power and Capacitor Power
- This Circuit is Tested on an Evaluation Board

Applications:
- Data Concentrator

Solution Benefits
- Low Cost and Simple Circuit
- Small Super-Capacitor Value
- 1min Operating Time using backup energy

Block Diagram & Evaluation Board

Available

TPS61021 sample now
0.9V~3.6V & 4A input
Max. 4V output
At this point, the power from Grid fails and drops down to zero. But the TPS61030 start switching to maintain the V_{OUT} for the Loads. V_{OUT} keeps stable at Super-capacitor voltage is 1.7V and I_{LOAD} is 2A peak. (use an E-Load to simulate the GPRS Module)
Supercapacitor Backup Power Supply with Active Cell Balancing Using TPS63020

Solution Features
- Active Backup Capacitor Cell Balancing
- Automatic switchover from main power to backup power
- No Glitches at the Transition from Main Power to Backup Power Operation

Featured Applications:
- Smart Meter in Smart Grid,
- Enterprise Storage,
- Industrial PLC

Solution Benefits
- Simple & Low-Cost Design, small BOM
- Up to 15W Output Power
- Wide useable Backup-Capacitor Voltage Range (1.8 to 5.5 V) results in smaller Solution Size and smaller Backup Capacitance
- Flexible Design, Easy Adaptable to Different System Energy Requirements

Tools & Resources
- **BOM:**
 - TPS63020 (5.5Vin, 4A sync buck-boost)
 - TPS25940A (2.7V-18V eFuse)
 - LP2998 (termination regulator)
- **Boards available** (contact M. Helmlinger)

© 2015 TI

For evaluation only, not FCC approved for resale

Available

available

45
To show the functionality of the active cell balancing circuit, a 1:2 Supercapacitor mismatch was used (C1=3F, C2=6F). During the pre-charging and charging operation the LP2998 is regulating the VCMID equal to VC/2.

If the main power fails, the TPS63020 converter immediately starts regulating the system voltage to its programmed output voltage. In this example 0.5 watts are supported for 6.5s in backup operation.
PMP9763

Energy Buffering Concept for Smart Meter Power Management

TPS62740 Low Iq Power Management
Smart Meter Power Management with Energy Buffering based on TPS62740

TI Designs Number: PMP9763

Solution Features
- Buck (MCU) and Boost (RF-PA) Rail
- Battery Load Decoupling with Energy Buffering
- Ultra Low IQ Design
- Longer Battery Runtime by VDD Down Conversion

Featured Applications:
- Water Meter
- Gas Meter
- Smart Wireless Sensor

Solution Benefits
- Supports long life batteries
- Extends battery runtime due to lower MCU supply and 360nA IQ
- Buffers energy with EDLC Super-Cap
- Does not require HLC

Tools & Resources
- **PMP9763 Tools Folder:**
 - application-note, schematics, Gerber files, etc.
- **BOM:**
 - TPS62740 (360nA IQ Buck in 3x2 WSON)
 - TPS61291 (Low IQ Boost w/ Bypass)

![Diagram of LowIQ-Buck TPS62740 and Boost TPS61291](image)
Long Life Wireless Sensor Requirements

Wireless Sensors like:
- Water-Meter
- Gas-Meter
- Heat-Cost-Allocator
- Smoke-Detector
- Connected Home
- IOT

Typical for this Systems:
1. Runtime last for ages
2. Low average power consumption
3. High power for data transmission (rarely)
The Common Power Management Challenge

- **Limited Source**
 - Long-Life-Batteries
 - Li-SOCl₂ type
 - ...
 - Energy Harvesters
 - Solar Panels
 -

- **Wireless Sensor**
 - 3.6V open circuit
 - ~3mA
 - >1.8V, <1mA

- **Control System**
 - Data Transmission
 - ~3.6V, up to 2.5A, pulsed (rarely)
Primary Batteries Specification

Needs: Long Life, Low Self Discharge, High Energy Density

- Li-MnO$_2$ - Lithium-manganese dioxide (3V)
- Li-SOCl$_2$ - Lithium-thionyl chloride (3.6V)

*) Source: Saft
Primary Batteries’ Cell Voltage

![Graph showing cell voltage vs. % of capacity discharged for different types of batteries: Li-SOCl₂, Li-SO₂, Li-MnO₂, Li-FES₂, Alkaline-MnO₂, Zn-Air. The graph indicates the voltage decrease as the capacity is discharged.]
Recent Solutions: „Power Pack“

- LiSOCl2
- HLC* or Stacked Super-CAP

Lowlq-Buck TPS62740
Ultra low Iq

- e.g. Buck/Boost TPS63...
- Data Transmission

uController

*) Hybrid Layer Capacitor for peak power assistance
Power Consumption Comparison example (CC430)

![Graph showing power consumption comparison]

- 30% lower current consumption when operated with TPS62740 (3.6V to 2.1V)

→ +30% Battery lifetime
Super Cap Power Concept

Single Super Cap secondary
- No stacked Capacitors (2.7Vmax)
- No balancing
- No HLC has to be used
- Low (e.g. 1.9V) Voltage to reduce standby current

![Diagram](image-url)
Sequence

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Idle</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Charge</td>
<td>Step 1.9 .. 2.7</td>
</tr>
<tr>
<td>3</td>
<td>Idle</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Discharge</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Idle</td>
<td></td>
</tr>
</tbody>
</table>

Voltage Domains
- **V_{MAX}**
- **2.7V**
- **1.9V**

Timing
- **TIME [~]**: 13 min
- **LOAD**: 0
- **TIME [~]**: 200µs

Selected Voltage
- **$V_{\text{SEL}}[V]$**:
 - 1.9
 - Step 1.9 .. 2.7
 - 2.7
 - 1.9
 - 1.9
Efficient Super Cap charging

1. Charge current is limited by resistor:

\[I_{\text{CAP}} = \frac{\Delta U}{R} \]

2. Power Loss is minimized due to Voltage stepping

\[P_{\text{LOSS}} = \frac{\Delta U^2}{R} \]

Example: \(R = 30\Omega \)

\[I_{\text{CAP}} = \sim 3.3\text{mA} \]

\[P_{\text{LOSS MAX}} = \sim 0.3\text{mW} \]
Summary / Outlook of PMP9763

- Mix of low current and high current peaks is a challenge for power management concepts
- Long life batteries require energy buffering concepts
- Ultra Low Quiescent Devices needs to be used

- Save battery lifetime
- No Stacked Caps + Balancing needed
- No HLC needed
- Efficient charging due to Voltage Stepping
- Reference Design PMP9763 available